Simplification of $\displaystyle \tan \bigg(i\ln\bigg(\frac{a+ib}{a-ib}\bigg)\bigg)$ is
what i try
$$\ln\bigg(\frac{a+ib}{a-ib}\bigg)=\theta$$
$$\frac{a+ib}{a-ib}=e^{i\theta}$$
$$\frac{a+ib+a-ib}{(a+ib)-(a-ib)}=\frac{e^{i\theta}+1}{e^{i\theta}-1}=\frac{e^{i\frac{\theta}{2}}+e^{-i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}}-e^{i\frac{\theta}{2}}}$$
$$\frac{a}{b}=\cot \frac{\theta}{2}$$
How do i solve it Help me please