The question is: evaluate $$\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{\arctan(x)}\right).$$ Please check my work: $$\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{\arctan(x)}\right) =\lim_{x\to 0}\frac{\arctan(x)-x}{x\arctan(x)}=\lim_{x\to 0}\frac{\arctan(x)-x}{\arctan(x)}\cdot \lim_{x\to 0}\frac{1}{x} \\=\lim_{x\to 0}\frac{\frac{1}{1+x^2}-1}{\frac{1}{1+x^2}}\cdot \lim_{x\to 0}\frac{1}{x}=0\cdot \infty.$$
-
You’re familiar with our standards for asking questions, correct? – gen-ℤ ready to perish Aug 08 '19 at 12:40
-
Since the function is odd, the limit (if it exists) must be $0$. – Barry Cipra Aug 08 '19 at 13:00
-
@MartinR Yes, the limit is the same, but here the question involves L'Hopital and there is about the squeeze theorem. – Robert Z Aug 08 '19 at 13:14
-
@RobertZ: There is one answer using L'Hôpital's rule. – Martin R Aug 08 '19 at 13:27
-
@MartinR That answer is not very useful here, don't you think? – Robert Z Aug 08 '19 at 13:30
4 Answers
After reading your work, I think that it is easier if you proceed in this way $$\lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{\arctan(x)}\right)= \lim_{x\to 0}\frac{\arctan(x)-x}{x\arctan(x)}= \lim_{x\to 0}\frac{\arctan(x)-x}{x^2}\cdot \lim_{x\to 0}\frac{x}{\arctan(x)}.$$ Now apply L'Hopital's rule.
- 145,942
$$\bigg[x\tan^{-1}x\bigg]' = x\cdot\frac{1}{1+x^2}+\tan^{-1}x=\frac{x+(x^2+1)\tan^{-1}x}{1+x^2}$$ $$\bigg[x+(x^2+1)\tan^{-1}x\bigg]'=1+1+2x\tan^{-1}x$$ On applying L' Hopital twice, $$l=\lim_{x\to0}\frac{-x^2}{x+(x^2+1)\tan^{-1}x}=\lim_{x\to0}\frac{-2x}{2x\tan^{-1}x+2}=\cdots$$
- 12,768
$$\lim _{x\to 0}\left(\frac{1}{x}-\frac{1}{\arctan\left(x\right)}\right)$$ Step 1:Simplify $$\lim _{x\to \:0}\left(\frac{\arctan \left(x\right)-x}{x\arctan \left(x\right)}\right)$$ Step 2: L'Hopitale's rule $$\lim _{x\to \:0}\left(\frac{\frac{1}{x^2+1}-1}{\arctan \left(x\right)+\frac{x}{x^2+1}}\right)$$ Step 3:Simplify $$\lim _{x\to \:0}\left(-\frac{x^2}{\arctan \left(x\right)\left(x^2+1\right)+x}\right)$$ Step 4:L'Hopitale's Rule $$\lim _{x\to \:0}\left(\frac{-2x}{2x\arctan \left(x\right)+2}\right)$$ Step 5: Plug in value of $x$. You will get answer as $0$
While using L'Hospital 's rule you missed part of the denominator. Check your work and continue with taking common denominator and one more L'Hospital to get the answer. My answer is $0$ see if I have the right answer.
- 68,728