Let $p(n)$ the probability of landing on $n$. We have \begin{align*}
p(x) &= 0, x \leq 0 \\
p(1) &= 1/4 \\
p(2) &= 1/4 + (1/4) p(1) \\
p(3) &= 1/4 + (1/4) p(1) + (1/4) p(2) \\
p(4) &= 1/4 + (1/4) p(1) + (1/4) p(2) + (1/4) p(3) \text{.}
\end{align*}
Then for $4 < x \leq 100$,
$$ p(x) = (1/4) (p(x-4) + p(x-3) + p(x-2) + p(x-1)) \text{.} $$
And finally, \begin{align*}
p(101) &= (1/4)(p(97) + p(98) + p(99)) \\
p(102) &= (1/4)(p(98) + p(99)) \\
p(103) &= (1/4)p(99) \text{.}
\end{align*}
If we just grind through this (with a computer, say), we find \begin{align*}
p(100) &= \frac{1483 \cdot 433429007217529406760887788822132850019412104490152405847}{4^{100}} \\
p(101) &= \frac{5^2 \cdot 5849 \cdot 374249521 \cdot 13476060839 \cdot 653694064078297082499263551694346971}{4^{100}} \\
p(102) &= \frac{5^3 \cdot 25951 \cdot 792647 \cdot 1496090412665813 \cdot 83546326261154633177972168761717}{4^{100}} \\
p(103) &= \frac{5^4 \cdot 280530121 \cdot 707720114206970708492483 \cdot 1295024776631696849057419}{4^{100}}
\end{align*}
You might ask: why did he factor those? To which the answer is: If the analytic expression you are seeking has a product in the numerator, how many factors are there and how complicated must they be? We can see that such an expression cannot have more than three factors, there is a simple behaviour in powers of $5$, and the factors must be relatively complicated.
We can simulate the iterated calculation with matrix multiplication.
Starting with the vector
$$ \begin{pmatrix} p(1) \\ p(2) \\ p(3) \\ p(4) \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{5}{16} \\ \frac{25}{64} \\ \frac{125}{256} \end{pmatrix} \text{,} $$
we might be fooled into thinking the result is a simple power of $5$ over a power of $4$, but it is not, as we can see from
$$ \begin{pmatrix} p(2) \\ p(3) \\ p(4) \\ p(5) \end{pmatrix} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1/4 & 1/4 & 1/4 & 1/4 \\
\end{pmatrix} \cdot \begin{pmatrix} \frac{5}{16} \\ \frac{25}{64} \\ \frac{125}{256} \\ \frac{369}{1024} \end{pmatrix} \text{.} $$
Let's call that matrix $M$.
If we keep multiplying by $M$, we can produce all the values of $p$ up to $p(100)$, at which point, we should stop and evaluate $p(101)$ through $p(103)$ using the equations above (or by using a different matrix, but figuring out that matrix is about as much work as just using the above equations). Every time we multiply by $M$, we advance by one. With zero applications, the last entry in the vector is $p(4)$. With $96$ applications, the last entry in the resulting vector is $p(100)$. Thus, we want to know a short cut for finding the $96^\text{th}$ power of $M$. One way uses $96 = 3 \cdot 32 = 3 \cdot 2^5$, so we square the matrix five times, then cube the result. This gives \begin{align*}
M^2 &= \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/16 & 5/16 & 5/16 & 5/16 \end{pmatrix} \\
&\vdots \\
M^{32} &= \left(
\begin{array}{cccc}
\frac{28822929547725725}{288230376151711744} &
\frac{57645967609791105}{288230376151711744} &
\frac{86469319984686289}{288230376151711744} &
\frac{115292159009508625}{288230376151711744} \\
\frac{115292159009508625}{1152921504606846976} &
\frac{230583877200411525}{1152921504606846976} &
\frac{345876029448673045}{1152921504606846976} &
\frac{461169438948253781}{1152921504606846976} \\
\frac{461169438948253781}{4611686018427387904} &
\frac{922338074986288281}{4611686018427387904} &
\frac{1383504947749899881}{4611686018427387904} &
\frac{1844673556742945961}{4611686018427387904} \\
\frac{1844673556742945961}{18446744073709551616} &
\frac{3689351312535961085}{18446744073709551616} &
\frac{5534025856688099085}{18446744073709551616} &
\frac{7378693347742545485}{18446744073709551616} \\
\end{array}
\right) \\
M^{96} &= \left(
\begin{array}{cccc}
\frac{9807971461541688681220646970903113588698612048390246045}{98079714615416886934934209737619787751599303819750539264} &
\frac{19615942923083377351721844949808533352050942306285379969}{98079714615416886934934209737619787751599303819750539264} &
\frac{29423914384625066083201154619301720212372456275919516625}{98079714615416886934934209737619787751599303819750539264} &
\frac{39231885846166754818790563197606420598477293189155396625}{98079714615416886934934209737619787751599303819750539264} \\
\frac{39231885846166754818790563197606420598477293189155396625}{392318858461667547739736838950479151006397215279002157056} &
\frac{78463771692333509543673151081218874953271741382716380805}{392318858461667547739736838950479151006397215279002157056} &
\frac{117695657538500264225677942996840554006681062414296916501}{392318858461667547739736838950479151006397215279002157056} &
\frac{156927543384667019151595181674813301447967118292833463125}{392318858461667547739736838950479151006397215279002157056} \\
\frac{156927543384667019151595181674813301447967118292833463125}{1569275433846670190958947355801916604025588861116008628224} &
\frac{313855086769334038426757434465238983841876291049455049625}{1569275433846670190958947355801916604025588861116008628224} &
\frac{470782630154001057326287785999688801261054083823698986345}{1569275433846670190958947355801916604025588861116008628224} &
\frac{627710173538668076054306953662175517474691367950021129129}{1569275433846670190958947355801916604025588861116008628224} \\
\frac{627710173538668076054306953662175517474691367950021129129}{6277101735386680763835789423207666416102355444464034512896} &
\frac{1255420347077336152660687680361428723266559841121354981629}{6277101735386680763835789423207666416102355444464034512896} &
\frac{1883130520616004229761336691523131452842196532147841327629}{6277101735386680763835789423207666416102355444464034512896} &
\frac{2510840694154672305359458097660930722518907703244817074509}{6277101735386680763835789423207666416102355444464034512896} \\
\end{array}
\right) \text{.}
\end{align*}
So we can multiply out $M^{96} \cdot (p(1) \dots p(4))^T$ to get the $p(97) \dots p(100)$ vector, then finish by using the equations above to extract the $p(101) \dots p(103)$ vectors.
(Some readers might imagine we can perhaps save a little effort using an eigensystem decomposition, so that one takes the $96^\text{th}$ power of a diagonal matrix (so one just takes each entry of the matrix to its $96^\text{th}$ power), but this isn't a big win. That diagonal (i.e., the list of eigenvalues of $M$) is $$\mathrm{diag}\left(1,\frac{1}{4} \left(-1+\frac{5^{2/3} \left(1+i \sqrt{3}\right)}{2
\sqrt[3]{3 \left(4 \sqrt{6}-9\right)}}-\frac{\left(1-i \sqrt{3}\right)
\sqrt[3]{5 \left(4 \sqrt{6}-9\right)}}{2\ 3^{2/3}}\right),\frac{1}{4}
\left(-1+\frac{5^{2/3} \left(1-i \sqrt{3}\right)}{2 \sqrt[3]{3 \left(4
\sqrt{6}-9\right)}}-\frac{\left(1+i \sqrt{3}\right) \sqrt[3]{5 \left(4
\sqrt{6}-9\right)}}{2\ 3^{2/3}}\right),\frac{1}{4}
\left(-1-\frac{5^{2/3}}{\sqrt[3]{3 \left(4 \sqrt{6}-9\right)}}+\frac{\sqrt[3]{5
\left(4 \sqrt{6}-9\right)}}{3^{2/3}}\right)\right)$$ and computing powers of these algebraic numbers takes Mathematica vastly longer than the repeated powering of $M$ described above.)
Notice that we have directly written $p(100) \dots p(103)$ as linear combinations of $p(1) \dots p(4)$, which is an analytic expression in terms of the starting probabilities. You could, in fact, pick arbitrary probability for $p(1) \dots p(4)$ and use the above to find the resulting probabilities for arriving at dice sums $\geq 100$.
Take a simple case lets say we roll the dice twice, so our sum can be any value from 2 - 8. Clearly, 2 will be less likely than 4 as we can get to 2 by rolling two 1's (1 + 1 = 2) whereas 4 we can get to by rolling 3,1 or 2,2.
– genescuba Aug 12 '19 at 23:30