0

I have been thinking about how to prove that the integral domain $\mathbb{R}[x,y]/(x^2+y^2-1)$ is integrally closed and I am writing this post to ask for proof verification.

Attempt.

Let $R=\mathbb{R}[x,y]/(x^2+y^2-1)$. Then $Q(R)=\frac{R}{\{nonzero\:elements\: of\:R\}}$. But {nonzero elements of $R$} is the complement of $(x^2+y^2-1)$ which is the prime ideal of $\mathbb{R}[x,y]$. So letting $p=(x^2+y^2-1)$, $Q(R)=(\mathbb{R}[x,y]/(x^2+y^2-1))_p=R_p.$ Let $\overline{R}$ be the integral closure of $R$ in $Q(R)$. Then since $(\overline{R})_p$ is the integral closure of $R_p(=Q(R))$ in $Q(R)_p(=Q(R))$, $\overline{R}_p=R_p$. And for all other primes $p'$ in $\mathbb{R}[x,y]$, $p'^c\cap p\neq\emptyset$. So $R_{p'}=0={\overline{R}}_{p'}$, which concludes $R=\overline{R}$.

0 Answers0