How to prove, without using beta function that
$$\int_0^\infty\frac{\ln^2x\ln(1+x)}{x(1+x)}\ dx=7\zeta(4)$$
where $\zeta$ is the Riemann zeta function.
Also, can we take advantage of this result to solve some harmonic series?
How to prove, without using beta function that
$$\int_0^\infty\frac{\ln^2x\ln(1+x)}{x(1+x)}\ dx=7\zeta(4)$$
where $\zeta$ is the Riemann zeta function.
Also, can we take advantage of this result to solve some harmonic series?
Denote the integral by $I$, split up into two parts in the point $1$ and let $x\to \frac{1}{x}$ in the second part to get: $$I=\color{blue}{\int_0^1\frac{\ln^2x\ln(1+x)}{x(1+x)} dx}+\color{red}{\int_0^1 \frac{\ln^2 x \ln(1+1/x)}{1+x}dx}$$ $$\require{cancel}=\color{blue}{\int_0^1 \frac{\ln^2 x\ln(1+x)}{x}dx-\cancel{\int_0^1\frac{\ln^2 x\ln(1+x)}{1+x}dx}}+\color{red}{\cancel{\int_0^1 \frac{\ln^2 x\ln(1+x)}{1+x}dx}-\int_0^1\frac{\ln^3 x}{1+x}dx}$$ $$\overset{\color{blue}{IBP}}=\color{blue}{-\frac13\int_0^1 \frac{\ln^3 x}{1+x}dx}\color{red}{-\int_0^1 \frac{\ln^3 x}{1+x}dx}=\color{purple}{-\frac43\int_0^1\frac{\ln^3 x}{1+x}dx}$$ $$=-\frac43\sum_{n=1}^\infty (-1)^{n-1} \int_0^1 x^{n-1} \ln^3 xdx=8\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^4}=7\zeta(4)$$
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\bbox[10px,#ffd]{\int_{0}^{\infty}{\ln^{2}\pars{x} \ln\pars{1 + x} \over x\pars{1 + x}}\,\dd x = 7\zeta\pars{4}}}:\ {\Large ?}.\qquad$ $\ds{\zeta}$ is the Riemann Zeta Function.
$\ds{\mrm{Li}_{\large s}}$ is the Polylogarithm.
Following the same approach here, we can get the generalization
$$\int_0^\infty\frac{\ln^{2a}(x)\ln(1+x)}{x(1+x)}dx=(2a)!(2a+2)\left(1-2^{-2a-1}\right)\zeta(2a+2)$$