With the poles of the rational function under consideration being
simple and the numerator of lesser degree than the denominator we find
$$\frac{1}{(1+z)^n-1} =
\sum_{k=0}^{n-1}
\frac{1}{z-\rho_k}
\mathrm{Res}_{z=\rho_k} \frac{1}{(1+z)^n-1}$$
where the $\rho_k$ are the roots of $(1+z)^n-1$ i.e.
$$\rho_k = \exp(2\pi i k/n) - 1.$$
Computing the residues we get
$$\sum_{k=0}^{n-1}
\frac{1}{z-\rho_k}
\frac{1}{n(1+\rho_k)^{n-1}}
= \sum_{k=0}^{n-1}
\frac{1}{z-\rho_k}
\frac{1+\rho_k}{n(1+\rho_k)^{n}}
\\ = \sum_{k=0}^{n-1}
\frac{1}{z-\rho_k}
\frac{1+\rho_k}{n}
= \frac{1}{n}
\sum_{k=0}^{n-1}
\frac{1+\rho_k}{z-\rho_k}.$$
Observing that $a(k,n) = 1 + \rho_k$ this becomes
$$\frac{1}{n}
\sum_{k=0}^{n-1}
\frac{a(k,n)}{z+1-a(k,n)}$$
as claimed.