Evaluate $$\lim_{k\to l}\frac{\sqrt{e^{\sin(2k)}}-\sqrt{e^{\sin(2l)}}}{k-l}$$
I know this is equivalent with $\frac{d}{dx}\sqrt{e^{\sin(2x)}}=\cos(2x)\sqrt{e^{\sin(2x)}}$, but my instructor wants me to solve this using limit. My attempt:
Multiply with $\frac{\sqrt{e^{\sin(2k)}}+\sqrt{e^{\sin(2l)}}}{\sqrt{e^{\sin(2k)}}+\sqrt{e^{\sin(2l)}}}$
$$ \frac{1}{2}\lim_{k\to l}\frac{e^{\sin(2k)}-e^{\sin(2l)}}{(k-l)(\sqrt{e^{\sin(2l)}})}$$
Here's where I stuck.