Is there a name for these sums?
$$\begin{align}\sum_{n=0}^m n^0 &= m \\[4pt] \sum_{n=0}^m n^1 &= \frac{m(m+1)}{2} \\[4pt] \sum_{n=0}^m n^2 &= \frac{m(m+1)(2m+1)}{6} \\[4pt] \sum_{n=0}^m n^3 &= \frac{m^2(m+1)(m+1)}{4} \end{align}$$
I've reached these results experimentally so there may be errors.