We invoke the following easy-to-prove theorem.
Tonelli's Theorem for Series. Let $a_{m,n} \geq 0$ for all $m, n \in \mathbb{N}$. Then
$$ \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{m,n}
= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m,n} $$
regardless of whether they are finite or not.
Proof. Write $S_{M,N}=\sum_{m=1}^{M}\sum_{n=1}^{N} a_{m,n}$ and notice that
$$ \sum_{m=1}^{\infty}\sum_{n=1}^{\infty} a_{m,n} = \sup_{M \geq 1}\sup_{N\geq 1} S_{M,N} \qquad\text{and}\qquad \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} a_{m,n} = \sup_{N\geq 1}\sup_{M \geq 1} S_{M,N}. $$
Then the desired conclusion follows by noting that supremums can be taken in arbitrary order without changing the value. $\square$
Using this, we find that whenever $u_n$ is non-negative and non-increasing,
\begin{align*}
\sum_{n=1}^{\infty} n (u_n - u_{n+1})
&= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mathbf{1}_{\{ k \leq n\}} (u_n - u_{n+1}) \\
&= \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \mathbf{1}_{\{ k \leq n\}} (u_n - u_{n+1}) \\
&= \sum_{k=1}^{\infty} (u_k - u_{\infty}),
\end{align*}
where $u_{\infty} := \lim_{n\to\infty} u_n$. So, if in addition that $u_{\infty} = 0$ holds, then this implies
$$ \sum_{n=1}^{\infty} n (u_n - u_{n+1}) = \sum_{k=1}^{\infty} u_k $$
regardless of the convergence of each side, and so, the desired claim follows.
For a more classical solution, check this:
Let $(u_n)_{n\geq 1}$ be a sequence of non-negative real numbers which is non-increasing and $u_n \to 0$ as $n\to\infty$. Then, As OP noted, summation by parts shows that
$$ \sum_{n=1}^{N} n (u_n - u_{n+1})
= - N u_{N+1} + \sum_{n=1}^{N} u_n
\leq \sum_{n=1}^{N} u_n, \tag{1}$$
and so, the convergence of $\sum_{n=1}^{\infty} u_n$ implies that of $\sum_{n=1}^{\infty} n(u_n - u_{n+1})$. Conversely, note that
\begin{align*}
\sum_{n=1}^{\infty} n (u_n - u_{n+1})
&= \left( \sum_{n=1}^{N} n (u_n - u_{n+1}) \right) + \left( \sum_{n=N+1}^{\infty} n (u_n - u_{n+1}) \right) \\
&\geq \left( - N u_{N+1} + \sum_{n=1}^{N} u_n \right) + \left( \sum_{n=N+1}^{\infty} N (u_n - u_{n+1}) \right) \\
&= \left( - N u_{N+1} + \sum_{n=1}^{N} u_n \right) + N u_{N+1} \\
&= \sum_{n=1}^{N} u_n,
\end{align*}
The second step follows from $\text{(1)}$ together with non-negativity of $u_n - u_{n+1}$, and the third step follows from the assumption that $u_n\to0$ as $n\to\infty$. Therefore this shows that the convergence of $\sum_{n=1}^{\infty} n(u_n - u_{n+1})$ implies that of $\sum_{n=1}^{\infty} u_n$.