If given the definition of $ e $:
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^ n$$
Using this fact alone, can it directly derive
$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$$
for positive and negative integer $x$ and in general, for any real number $x$?