To the theory presented in this link, add a two place function symbol $\#$ denoting a counting function on numbers in sets, to the list of primitives of that language, and add the axiom:
$\#^K (x) = n \leftrightarrow [x=min(K) \land n=1] \lor [x \in K \land min(K) < x \land n= S[\#^K(P^K(x))]$
Define $P^K(x) = y \iff x \in K \land y \in K \land y < x \land \not \exists z \in K (y < z < x)] $
Define Successor as: $x=S(y) \iff y < x \land \not \exists z (y < z < x)$
Define: $ x = min(K) \iff x \in K \land \forall y \in K (x \leq y)$
Would the resulting theory be equi-interpretable with Peano arithemtic "PA"? And thus conservatively extends PA.