It's related to this Olympiad Inequality $\sum\limits_{cyc} \frac{x^4}{8x^3+5y^3} \geqslant \frac{x+y+z}{13}$:
$x,y,z >0$, prove $$\Big(\frac{x^4}{8x^3+5y^3}\Big)^3+\Big(\frac{y^4}{8y^3+5z^3}\Big)^3+\Big(\frac{z^4}{8z^3+5x^3}\Big)^3 \geqslant \frac{x^3+y^3+z^3}{13^3}$$
The inequality is equivalent to : $$x^3\Big(\frac{1}{8+5(\frac{y}{x})^3}\Big)^3+y^3\Big(\frac{1}{8+5(\frac{z}{y})^3}\Big)^3+z^3\Big(\frac{1}{8+5(\frac{x}{z})^3}\Big)^3 \geqslant \frac{x^3+y^3+z^3}{13^3}$$
Or :
$$\frac{x^3\Big(\frac{1}{8+5(\frac{y}{x})^3}\Big)^3+y^3\Big(\frac{1}{8+5(\frac{z}{y})^3}\Big)^3+z^3\Big(\frac{1}{8+5(\frac{x}{z})^3}\Big)^3}{x^3+y^3+z^3} \geqslant \frac{1}{13^3}$$
Now we apply the Jensen's inequality to the function $f(x)=\frac{1}{(8+5x)^3}$ wich is clearly convex we get :
$$\frac{x^3 f((\frac{y}{x})^3)+y^3 f((\frac{z}{y})^3)+z^3 f((\frac{x}{z})^3)}{x^3+y^3+z^3} \geqslant f\Big(\frac{x^3 (\frac{y}{x})^3+y^3 (\frac{z}{y})^3+z^3 (\frac{x}{z})^3}{x^3+y^3+z^3}\Big)=\frac{1}{13^3}$$
And we are done .
My question is have you an nice alternative proof ?
Thanks a lot for your time .