Let $\arctan\left(\dfrac{2\cos6^\circ\cos12^\circ}{1+2\cos6^\circ\sin12^\circ}\right)=y,-90^\circ<y<90^\circ$
$\implies\dfrac{2\cos6^\circ\cos12^\circ}{1+2\cos6^\circ\sin12^\circ}=\tan y=\dfrac{\sin y}{\cos y}$
Rearranging we get $$\cos(6^\circ+y)+\cos(18^\circ+y)=\sin y=\cos(90^\circ-y)$$
$$\iff\cos(90^\circ-y)=\cos(18^\circ+y)+\cos(6^\circ+y)=2\cos6^\circ\cos(12^\circ+y)\ \ \ \ (1)$$
Like Solve equation $\tan(x)=\sec(42^\circ)+\sqrt{3}$
using Proving trigonometric equation $\cos(36^\circ) - \cos(72^\circ) = 1/2$
$$\cos36^\circ=\cos72^\circ+\cos60^\circ=2\cos6^\circ\cos66^\circ\ \ \ \ (2)$$
Compare $(1),(2)$
$$\frac{\cos36^\circ}{\cos(90^\circ-y)}=\dfrac{2\cos6^\circ\cos66^\circ}{2\cos6^\circ\cos(12^\circ+y)}$$
$$\iff\dfrac{\cos(12^\circ+y)}{\cos(90^\circ-y)}=\dfrac{\cos66^\circ}{\cos36^\circ}$$
Apply Componendo et Dividendo and Prosthaphaeresis Formulas to find
$$\tan(y-39^\circ)=\tan15^\circ$$
The rest should be easy!