Please refer to the question posted here $\operatorname{Aut}(S_4)$ is isomorphic to $S_4$
Here, I am not able to prove how $f$ fixes $3$-cycles.
My attempt -
We have to prove that $\ker(\phi)=\operatorname{id}_{S_4}$. Let $\phi(f)=(1)\in S_4$ which implies $f(P_i)=P_i \ \forall i=1,2,3,4. $ We have to prove $f\operatorname{id}_{S_4}$.
Let $(a\ b\ c )$ be a $3$- cycle. Then $\langle(a\ b\ c )\rangle$ is one of $P_i$'s where $\langle(a\ b\ c )\rangle$ is the subgroup generated by $(a\ b\ c )$. So, $\phi(f)(\langle(a\ b\ c )\rangle)=\langle(a\ b\ c )\rangle$ and therefore $f\bigl(\langle(a\ b\ c )\rangle\bigr)=\langle(a\ b\ c )\rangle$. This implies that $f((a\ b\ c ))=(a\ b\ c )$ or $f \bigl((a\ b\ c) \bigr) =(a\ b\ c )^2=(a\ c\ b )$. Here I am not able to eliminate the case $f\bigl((a\ b\ c )\bigr)=(a\ c\ b )$.
Can anyone please help me?
Thanks!