Prove that $\forall n\ge0,43\mid 6^{n+2}+7^{2n+1}$ in three ways:
a) Use mathematical induction
b) Using techniques of modular arithmetic
c) Without induction, nor modular arithmetic (Hint: use binomial theorem.)
a)
Proof.
Base case: $n=0$
WTS $\exists k\in\mathbb{Z},s.t. 6^{(0)+2}+7^{2(0)+1}=43k$
Let $k=1$, we have:
$$36+7=43\tag*{hold}$$
Inductive step:
Assume$$\exists k_1\in\mathbb{Z},s.t. 43k_1=6^{(j)+2}+7^{2(j)+1}$$
Show$$\exists k_2\in\mathbb{Z},s.t. 43k_2=6^{(j+1)+2}+7^{2(j+1)+1}$$
Let $$k_2=6k_1+7^{2j+1}$$
That $$43k_2=43(6k_1+7^{2j+1})=6(43k_1)+43(7^{2j+1})$$
By assumption $43k_1=6^{j+2}+7^{2j+1}$ have $$=6(6^{j+2}+7^{2j+1})+43(7^{2j+1})$$ $$=6(6^{j+2}+7^{2j+1})+301(7^{2j})$$ $$=6(6^{j+2}+7^{2j+1})+343(7^{2j})-42(7^{2j})$$ $$=6(6^{j+2}+7^{2j+1})+7^{2j+3}-6(7^{2j+1})$$ $$=6(6^{j+2}+7^{2j+1})-6(7^{2j+1})+7^{2j+3}$$ $$=6(6^{j+2}+7^{2j+1}-7^{2j+1})+7^{2j+3}$$ $$=6^{j+3}+7^{2j+3}=6^{(j+1)+2}+7^{2(j+1)+1}\tag*{$\square$}$$
b) $$\text{WTS }\forall x\ge0,6^{n+2}+7^{2n+1}\equiv0(\text{mod }43)$$
I first checked some "techniques of modular arithmetics" $\dots$
Theorem 3.1.2
if $a\equiv b(\text{mod m})$ and $b\equiv c\text{(mod }m)$, then $a\equiv c(\text{mod m})$
Theorem 3.1.3
When $a$ and $b$ are nonnegative integers, the relationship $a\equiv b\text{(mod }m)$ is equivalent to $a$ and $b$ leaving equal remainders upon division by $m$
Theorem 3.1.4
For a given modulus $m$, each integer is congruent to exactly one of the numbers in the set $\{0,1,2,\dots,m-1\}.$
Theorem 3.1.5
If $a\equiv b(\text{mod }m)$ and $c\equiv d(\text{mod }m)$, then
$i)(a+c)\equiv(b+d)(\text{mod }m)$
$ii)ac\equiv bd(\text{mod }m)$
Theorem 3.1.6
If $a\equiv b\text{(mod }m)$, then $a^n\equiv b^n\text{(mod }m)$, for every natual number n.
(from UTM "A Readable Introduction to Real Mathmatics" Chapter 3)
Proof.
$$\vdots$$
c) $$\text{WTS }\forall n\ge0,43\mid 6^{n+2}+7^{2n+1}$$
Proof.
Let $n\ge0$
Show $\exists k\in\mathbb{Z},s.t. 43k=6^{n+2}+7^{2n+1}$
Rough work:
$$6^{n+2}+7^{2n+1}=6^{n+2}+\frac{7^{2n+2}}{7}=6^{n+2}+\frac{(7^2)^{n+1}}{7}$$ $$=6^{n+2}+\frac{(43+6)^{n+1}}{7}=6^{n+2}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}+{n+1\choose n+1}6^{n+1}}{7}$$ $$=\frac{7(6^{n+2})+6^{n+1}}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=\frac{42(6^{n+1})+6^{n+1}}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=\frac{6^{n+1}(42+1)}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=43(\frac{6^{n+1}+{n+1\choose0}43^{n}+\dots+{n+1\choose n}6^{n}}{7})$$
Therefore I suppose to let $k=\frac{6^{n+1}+{n+1\choose0}43^{n}+\dots+{n+1\choose n}6^{n}}{7}$, but how do I prove this $k\in\mathbb{Z}$?
Where should I start for b) ?
Any help or hint or suggestion would be appreciated.