6

Prove that $\forall n\ge0,43\mid 6^{n+2}+7^{2n+1}$ in three ways:

a) Use mathematical induction

b) Using techniques of modular arithmetic

c) Without induction, nor modular arithmetic (Hint: use binomial theorem.)

a)

Proof.

Base case: $n=0$

WTS $\exists k\in\mathbb{Z},s.t. 6^{(0)+2}+7^{2(0)+1}=43k$

Let $k=1$, we have:

$$36+7=43\tag*{hold}$$

Inductive step:

Assume$$\exists k_1\in\mathbb{Z},s.t. 43k_1=6^{(j)+2}+7^{2(j)+1}$$

Show$$\exists k_2\in\mathbb{Z},s.t. 43k_2=6^{(j+1)+2}+7^{2(j+1)+1}$$

Let $$k_2=6k_1+7^{2j+1}$$

That $$43k_2=43(6k_1+7^{2j+1})=6(43k_1)+43(7^{2j+1})$$

By assumption $43k_1=6^{j+2}+7^{2j+1}$ have $$=6(6^{j+2}+7^{2j+1})+43(7^{2j+1})$$ $$=6(6^{j+2}+7^{2j+1})+301(7^{2j})$$ $$=6(6^{j+2}+7^{2j+1})+343(7^{2j})-42(7^{2j})$$ $$=6(6^{j+2}+7^{2j+1})+7^{2j+3}-6(7^{2j+1})$$ $$=6(6^{j+2}+7^{2j+1})-6(7^{2j+1})+7^{2j+3}$$ $$=6(6^{j+2}+7^{2j+1}-7^{2j+1})+7^{2j+3}$$ $$=6^{j+3}+7^{2j+3}=6^{(j+1)+2}+7^{2(j+1)+1}\tag*{$\square$}$$

b) $$\text{WTS }\forall x\ge0,6^{n+2}+7^{2n+1}\equiv0(\text{mod }43)$$

I first checked some "techniques of modular arithmetics" $\dots$

Theorem 3.1.2

if $a\equiv b(\text{mod m})$ and $b\equiv c\text{(mod }m)$, then $a\equiv c(\text{mod m})$

Theorem 3.1.3

When $a$ and $b$ are nonnegative integers, the relationship $a\equiv b\text{(mod }m)$ is equivalent to $a$ and $b$ leaving equal remainders upon division by $m$

Theorem 3.1.4

For a given modulus $m$, each integer is congruent to exactly one of the numbers in the set $\{0,1,2,\dots,m-1\}.$

Theorem 3.1.5

If $a\equiv b(\text{mod }m)$ and $c\equiv d(\text{mod }m)$, then

$i)(a+c)\equiv(b+d)(\text{mod }m)$

$ii)ac\equiv bd(\text{mod }m)$

Theorem 3.1.6

If $a\equiv b\text{(mod }m)$, then $a^n\equiv b^n\text{(mod }m)$, for every natual number n.

(from UTM "A Readable Introduction to Real Mathmatics" Chapter 3)

Proof.

$$\vdots$$

c) $$\text{WTS }\forall n\ge0,43\mid 6^{n+2}+7^{2n+1}$$

Proof.

Let $n\ge0$

Show $\exists k\in\mathbb{Z},s.t. 43k=6^{n+2}+7^{2n+1}$

Rough work:

$$6^{n+2}+7^{2n+1}=6^{n+2}+\frac{7^{2n+2}}{7}=6^{n+2}+\frac{(7^2)^{n+1}}{7}$$ $$=6^{n+2}+\frac{(43+6)^{n+1}}{7}=6^{n+2}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}+{n+1\choose n+1}6^{n+1}}{7}$$ $$=\frac{7(6^{n+2})+6^{n+1}}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=\frac{42(6^{n+1})+6^{n+1}}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=\frac{6^{n+1}(42+1)}{7}+\frac{{n+1\choose0}43^{n+1}+\dots+{n+1\choose n}(43)6^{n}}{7}$$ $$=43(\frac{6^{n+1}+{n+1\choose0}43^{n}+\dots+{n+1\choose n}6^{n}}{7})$$

Therefore I suppose to let $k=\frac{6^{n+1}+{n+1\choose0}43^{n}+\dots+{n+1\choose n}6^{n}}{7}$, but how do I prove this $k\in\mathbb{Z}$?

Where should I start for b) ?

Any help or hint or suggestion would be appreciated.

Ethan
  • 5,291

8 Answers8

3

For an alternative method:

Let $a_n=6*{n+2}+7^{2n+1}=36\times 6^n+7\times 49^n$

Then, of course $a_0=36+7=43$ and $a_1=559=43\times 13$.

We remark that $6$, $49$ are roots of $$p(x)=(x-6)(x-49)=x^2 - 55 x + 294$$

Thus the $a_n$ satisfy the linear recurrence $$a_n=55a_{n-1}-294a_{n-2}$$

Since $a_0, a_1$ are both divisible by $43$ it follows from a trivial induction that all the $a_n$ are.

Note: we never needed the explicit form of the recursion, just that the sequence did satisfy a linear recursion over the integers.

lulu
  • 70,402
  • That's my favorite method. But the key point is that the recurrence is linear with integer coefficients. – lhf Sep 26 '19 at 16:32
  • @lhf Yes, that's what I meant by "it existed". Granted, I was a bit terse. I'll edit to elaborate. By the way, I am also partial to this approach, as it "explains" the division, which otherwise appears as the result of a mysterious arithmetic cancellation of terms. – lulu Sep 26 '19 at 16:34
  • 2
    Please strive to avoid posting yet more dupe answers to FAQs. – Bill Dubuque Sep 26 '19 at 17:15
1

Proof of (b)

First note that $6^3\equiv 1\text{(mod }43)$. Now consider

$$6^{2n+1}(6^{n+2}+7^{2n+1})\equiv 6^{3n+3}+42^{2n+1} \equiv 1-1 \equiv 0\text{(mod }43).$$

Therefore $$6^{n+2}+7^{2n+1} \equiv 0\text{(mod }43).$$

Proof of (c)

$$6^{n+2}+7^{2n+1}=36(6^n)+7(6+43)^n=(36+7)6^n+ \text {a multiple of 43}$$

and hence the result.

1

We can answer the question using Theorem 3.16 from your stated theorems. $6^{n+2}+7^{2n+1}$ can be rewritten as

(1) $$36 \cdot 6^n + 7 \cdot 49^n$$

Let's examine $49^n$.

$$49^n = (43+6)^n$$

And since $43 + 6 \equiv 6$ mod 43, from theorem 3.16, we have $49^n \equiv 6^n$ mod 43. So we can replace $49^n$ with $6^n$ in (1):

$$36 \cdot 6^n + 7 \cdot 6^n = 43 \cdot 6^n \equiv 0$$mod(43)

So the original expression is divisible by 43.

M D
  • 724
0

You have:

  • $6^{0+2}\equiv36\pmod{43}$;
  • $6^{1+2}\equiv1\pmod{43}$;
  • $6^{2+2}\equiv6\pmod{43}$

and then you start all over again ($36$, $1$, $6$, $36$, …). Also, you have:

  • $7^{2\times0+1}\equiv7\pmod{43}$;
  • $7^{2\times1+1}\equiv42\pmod{43}$;
  • $7^{2\times2+1}\equiv37\pmod{43}$

and then you also start all over again. Since $36+7\equiv0\pmod{43}$, $1+42\equiv0\pmod{43}$, and $6+37\equiv0\pmod{43}$, you're done.

0

It is a one liner: $$36\times6^n+49^n\times 7\equiv -7\cdot 6^n+6^n\times 7$$

0

$(a):$

If $f(n)=6^{n+2}+7^{2n+1},$

Eliminate one of $6^n,7^{2n}$

$f(n+1)-6f(n)=?$

Or $f(n+1)-7^2f(n)=?$

Observe that both are divisible by $43$

So, if $43$ divides $f(n),43$ must divide $f(n+1)$

$(b)$

$7^2\equiv6\pmod{43}\implies7^{2n}=(7^2)^n\equiv6^n$

$(c)$

$7^{2n}=(7^2)^n=(6+43)^n=6^n+$ terms containing $43$

Generalization:

$$(m+1)^{2n+1}+m^{n+2}$$ is divisible by $m(m+1)+1$

0

(a) Let $x_n = 6^{n+2}+7^{2n+1} = 36\cdot 6^n+ 7\cdot 49^n$. Then $x_{n+2} = (6+49)x_{n+1}-(6\cdot 49)x_n$. The claim follows by induction since $x_0=43$ and $x_1= 559$ are both multiples of $43$.

(b) $6^{n+2}+7^{2n+1} = 36\cdot 6^n+ 7\cdot 49^n \equiv 36\cdot 6^n+ 7\cdot 6^n = 43 \cdot 6^n \equiv 0 \bmod 43$.

(c) $6^{n+2}+7^{2n+1} = 36\cdot 6^n+ 7\cdot 49^n = 36\cdot 6^n + 7(43+6)^n = 36\cdot 6^n + 7(43a+6^n) = 43\cdot 6^n+43a$

lhf
  • 216,483
0

$6^2 = 36 \equiv -7 \pmod {43}$.

And $7^2=49\equiv 6 \pmod {43}$.

So $6^{n+2}\equiv 6^n6^2 \equiv (7^2)^n(-7)\equiv -7^{2n+1}\pmod {43}$.

So $6^{n+2} + 7^{2n+1}\equiv 0\pmod {43}$ and

so $43$ divides $6^{n+2} + 7^{2n+1}$.

lhf
  • 216,483
fleablood
  • 124,253
  • 3
    Please strive to avoid posting yet more dupe answers to FAQs. – Bill Dubuque Sep 26 '19 at 17:15
  • The other answers were nearly all induction method. – fleablood Sep 26 '19 at 17:49
  • This (and closely related) questions has been asked and answered many times in the past (e.g dupe link above). We surely have every possible approach by now (many times over). Better to organize them rather than keep repeating them. – Bill Dubuque Sep 26 '19 at 18:53