Suppose $f_n:X\to\overline{\Bbb R}$ for all $n\in\Bbb N.$
We can write
$$\left\{x\in X:\lim_{n\to\infty}f_n(x)\text{ exists}\right\}=E\cup E_\infty\cup E_{-\infty},$$
where $E_{\pm\infty}:=\left\{x\in X\mid\lim\limits_{n\to\infty}f_n(x)=\pm\infty\right\}$ and $E:=\left\{x\in X\mid\lim\limits_{n\to\infty}f_n(x)\text{ exists and is finite}\right\}.$
It suffices to show that each term is measurable.
Notice that $\limsup f_n\text{ and} \liminf f_n$ are measurable because $f_n$ is measurable and by proposition 2.7.
Define $$g(x):= \limsup f_n(x)-\liminf f_n(x),$$ where $\limsup f_n(x),\liminf f_n(x) \notin\{\pm\infty\},$ so, $g$ is measurable.
Thus, $E=\left\{x: \limsup f_n=\liminf f_n\notin\{\pm\infty\}\right\}$ implies the set $E$ can be written as $g^{-1}(\{0\}),$ which is measurable.
Now $\lim\limits_{n\to\infty}f_n(x)=\infty$ if for all $M\geq 1$ there exists $N$ such that $f_n(x)\geq M$ for all $n\geq N$, that is,
$$E_\infty=\bigcap_{M=1}^\infty\bigcup_{N=1}^\infty\bigcap_{n\geq N}\{x:f_n(x)\geq M\}$$
hence is measurable. A similar argument works for $E_{-\infty}$, that is,
$$ E_{-\infty}=\bigcap_{M=1}^\infty\bigcup_{N=1}^\infty\bigcap_{n\geq N}\{x:f_n(x)\leq -M\}.$$
Suppose $f_n: X\to \mathbb{C}$ for all $n\in \mathbb{N}$. Since $f_n(x)$ converges if and only if $\operatorname{Re}(f_n(x))$ and $\operatorname{Im}(f_n(x))$ are both convergent, that is,
$$\left\{x\in X:\lim_{n\to\infty} f_n\text{ exists}\right\}=\left\{x: \lim_{n\to\infty}\operatorname{Re}(f_n)\text{ exists}\right\}\cap\left\{x\in X:\lim_{n\to\infty}\operatorname{Im}(f_n)\text{ exists}\right\}$$
which two sets are both measurable by the previous argument and their intersection is also true. This gives the desired result.