Supposing $b > 0$ and $a < b$, how could I prove:
$$ \frac{a}{b} < \frac{a+1}{b+1} $$
Supposing $b > 0$ and $a < b$, how could I prove:
$$ \frac{a}{b} < \frac{a+1}{b+1} $$
Hint:
$\dfrac{a}{b} = \dfrac{a(b+1)}{b(b+1)} = \dfrac{ab+a}{b(b+1)}$. However, $\dfrac{a+1}{b+1} = \dfrac{(a+1)(b)}{(b)(b+1)} = \dfrac{ab+b}{b(b+1)}$.
If $a<b$ then what about $ab+a$ vs $ab+b$?