-1

Supposing $b > 0$ and $a < b$, how could I prove:

$$ \frac{a}{b} < \frac{a+1}{b+1} $$

Bman72
  • 2,854
  • 1
  • 16
  • 30

2 Answers2

5

It's equivalent to $$ab + {\color{red}a} < ab +{\color{red}b}$$

Bman72
  • 2,854
  • 1
  • 16
  • 30
2

Hint:

$\dfrac{a}{b} = \dfrac{a(b+1)}{b(b+1)} = \dfrac{ab+a}{b(b+1)}$. However, $\dfrac{a+1}{b+1} = \dfrac{(a+1)(b)}{(b)(b+1)} = \dfrac{ab+b}{b(b+1)}$.

If $a<b$ then what about $ab+a$ vs $ab+b$?

Sebastiano
  • 7,649
Mike
  • 20,434