I need help using induction on a recursive sequence.
Given $S_{1}=2$ and $S_{n+1}= \frac{S_{n}}{2} + \frac{1}{S_{n}}$
I am working on the recursive convergence to $\sqrt{2}$, therefore I want to show that it is bounded below by an arbitrary lower bound, in which I chose 1. thus by induction I want to show that $S_{n+1} > 1$, $$ S_{n} > 1$$ $$\frac{1}{S_{n}} < 1$$ $$S_n +\frac{1}{S_{n}} > ?+1$$
I get stuck here. Im not to sure how to get to my end point of $S_{n+1}$.