How do I ind the limit of
$$\lim_{x \rightarrow 0}\frac{\tan x- x-\frac{x^3}{3}}{\sin^5x}$$
by L'Hopital's Rule?
Using Desmos, I get the answer that this limit evaluates to $\frac{3}{15}$, but I can't get that answer.
This is what I've done so far:
\begin{align} &\lim_{x \rightarrow 0}\frac{\tan x -x}{\sin^5x}-\lim_{x \rightarrow 0}\frac{x^3/3}{\sin^5x}\\ &=\lim_{x \rightarrow 0}\frac{\sec^2x-1}{5\sin^4x\cos x}-\lim_{x \rightarrow 0}\frac{x^2}{5\sin^4x\cos x}\\ &=\lim_{x \rightarrow 0}\frac{\tan^2x}{5\sin^4x\cos x}-\lim_{x \rightarrow 0}\frac{x^2}{\sin^2x}\lim_{x \rightarrow 0}\frac{1}{5\sin^2x\cos x}\\ &=\lim_{x \rightarrow 0}\frac{1}{5\sin^2x\cos^3x}-\lim_{x \rightarrow 0}\frac{\cos^2x}{5\sin^2x\cos^3 x}\\ &=\frac{1}{5} \end{align}
I checked by answer with Desmos, and the 4th line is where the difference occurs. In the 4th line, I did this.
$$ \lim_{x \rightarrow 0}\frac{x^2}{\sin^2x}=\lim_{x \rightarrow 0}\frac{1}{(\sin x/x)^2}=1 $$
Shouldn't this be a valid operation? I'm just using the product law on limits. If anyone could tell me where I've gone wrong, I will be grateful.