3

How to calculate the sum $S=\mathop{\sum}\limits_{i=0}^{\lfloor \frac{n}{4}\rfloor}\binom{n}{4i}$ ? Or how to get a good upper bound on $S$ in terms of $n$?

Zuo Ye
  • 105

1 Answers1

0

As we are interested in every fourth term

let us consider $x^4=1,x=\pm i,\pm1$

Let $$a(1+1)^n+b(1-1)^n+c(1-i)^n+d(1+i)^n=S=?$$

Compare the coefficients of $\binom nr$ where $r=4i,4i+1,4i+2,4i+3$ to find

$$a+b+c+d=1$$

$$a-b-ci+di=0$$

$$a+b-c-d=0$$

$$a-b+ci-di=0$$

Add second and fourth $$a-b=0$$

Then subtract second from the fourth

$$i(c-d)$$

From the first $$2b+2d=1$$

From the third $$2b-2d=0$$

$$\implies b=d=\dfrac14$$