I found this proof for $\lim_{n \to \infty} (1+\frac{x}{n})^n=e^x$ online and wish to ask one small tiny bit of it
$$e^{\ln{(1 + \frac{x}{n})^n} }=e^{n \ln(1+\frac{x}{n})}$$
$$\lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n =\lim_{n \to +\infty} e^{n \ln(1+\frac{x}{n})} \\ =e^{\lim_{n \to +\infty} n \ln(1+\frac{x}{n})} =e^{\lim_{n \to +\infty}\frac{ \ln(1+\frac{x}{n})}{\frac{1}{n}}}$$
Apply L'Hopital's Rule:
$$=e^{\lim_{n \to +\infty}\frac{(\frac{-x}{n^2})\frac{1}{1+\frac{x}{n}}}{-\frac{1}{n^2}}} =e^{\lim_{n \to +\infty}\frac{x}{1+\frac{x}{n}}} =e^x$$
What I don't understand is the $\frac{-x}{n^2}$. Where does it come from? Isn't the derivative of $\ln(1+\frac{x}{n})$ is $\dfrac{1}{1+\frac{x}{n}}$ only?