Let $p$ be an odd prime and let $p^*=(-1)^{\frac{p-1}{2}}p$. Let $n\geqslant 1$. Show that $\mathbb{Q}(\sqrt{p^*})$ is the only quadratic extension of $\mathbb{Q}$ contained in $\mathbb{Q}(\zeta_{p^n})$. (Hint. Consider the Gauss sum $g=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)\zeta_p^a$, where $\left(\frac{a}{p}\right)$ is the Legendre symbol.
My try: Since $g^2=\left(\frac{-1}{p}\right)p=p^*$, we have $\sqrt{p^*}=g\in\mathbb{Q}(\zeta_p, \zeta_p^2, \dotsc, \zeta_p^{p-1})=\mathbb{Q}(\zeta_p)$. I want to know what does $\mathbb{Q}(\zeta_{p^n})$ do and how to prove the uniqueness?
Any hints are appreciated, thanks in advance.