\begin{align}
J&=\int_0^1 \frac{\ln(1+x^2)\ln x}{1-x^2}\,dx
\end{align}
On $[0;1]$, define the function $R$ by,
\begin{align}
R(x)&=\int_0^x \frac{\ln t}{1-t^2}\,dt\\
&=\int_0^1 \frac{x\ln(tx)}{1-t^2x^2}\,dt
\end{align}
Observe that,
\begin{align}R(0)&=0\\
R(1)&=\int_0^1 \frac{\ln t}{1-t^2}\,dt\\
&=\int_0^1 \frac{\ln t}{1-t}\,dt-\int_0^1 \frac{t\ln t}{1-t^2}\,dt\\
&=\int_0^1 \frac{\ln t}{1-t}\,dt-\frac{1}{4}\int_0^1 \frac{\ln t}{1-t}\,dt\\
&=\frac{3}{4}\int_0^1 \frac{\ln t}{1-t}\,dt\\
&=\frac{3}{4}\times -\frac{\pi^2}{6}\\
&=-\frac{\pi^2}{8}\\
J&=\Big[R(x)\ln(1+x^2)\Big]_0^1-\int_0^1 \frac{2xR(x)}{1+x^2}\,dx\\
&=-\frac{\pi^2}{8}\ln 2-\int_0^1\int_0^1 \frac{2x^2\ln(tx)}{(1+x^2)(1-t^2x^2)}\,dt\,dx\\
&=-\frac{\pi^2}{8}\ln 2-\int_0^1\int_0^1 \frac{2x^2\ln t}{(1+x^2)(1-t^2x^2)}\,dt\,dx-\int_0^1\int_0^1 \frac{2x^2\ln t}{(1+x^2)(1-t^2x^2)}\,dt\,dx\\
&=-\frac{\pi^2}{8}\ln 2-\int_0^1 \left(\frac{x\ln x\ln(1+x)}{1+x^2}-\frac{x\ln x\ln(1-x)}{1+x^2}\right)\,dx-\\
&\int_0^1 \left(\frac{\ln t\ln(1+t)}{t}-\frac{\ln t\ln(1-t)}{t}-\frac{t\ln t\ln(1+t)}{1+t^2}+\frac{t\ln t\ln(1-t)}{1+t^2}-\frac{\frac{\pi}{2}\ln t}{1+t^2}\right)\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\int_0^1 \frac{\ln t\ln(1+t)}{t}\,dt+\int_0^1 \frac{\ln t\ln(1-t)}{t}\,dt+\frac{\pi}{2}\int_0^1 \frac{\ln t}{1+t^2}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}-\frac{1}{2}\Big[\ln^2 t\ln(1+t)\Big]_0^1+\frac{1}{2}\int_0^1 \frac{\ln^2 t}{1+t}\,dt+\\
&\frac{1}{2}\Big[\ln^2 t\ln(1-t)\Big]_0^1+\frac{1}{2}\int_0^1 \frac{\ln^2 t}{1-t}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\int_0^1 \frac{\ln^2 t}{1-t^2}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\int_0^1 \frac{\ln^2 t}{1-t}\,dt-\int_0^1 \frac{t\ln^2 t}{1-t^2}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\int_0^1 \frac{\ln^2 t}{1-t}\,dt-\frac{1}{8}\int_0^1 \frac{\ln^2 t}{1-t}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\frac{7}{8}\int_0^1 \frac{\ln^2 t}{1-t}\,dt\\
&=-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\frac{7}{8}\times 2\zeta(3)\\
&=\boxed{-\frac{\pi^2}{8}\ln 2-\frac{\pi}{2}\text{G}+\frac{7}{4}\zeta(3)}
\end{align}
NB: I assume,
\begin{align}
\int_0^1 \frac{\ln x}{1-x}\,dx&=-\zeta(2)\\
&=-\frac{\pi^2}{6}\\
\int_0^1 \frac{\ln^2 x}{1-x}\,dx&=2\zeta(3)
\end{align}