I want to check if this series converge or diverge: $$\sum_{n = 1}^{\infty}\frac{\cos n}{\sqrt{n}}(1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!})$$
Which technique can i use there ?
UPD: I thought using Abel's theorem here as following. Series $$\sum_{n = 1}^{\infty}a_n = \sum_{n = 1}^{\infty} \frac{\cos n }{\sqrt{n}}$$ converges. But is sequence $$\{(1 + \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!})\}_{n = 1}^{\infty}$$ bounded ?