First, lets establish some identities:
From here we have
$$\sum_{n=1}^\infty (H_n^2-H_n^{(2)})x^{n}=\frac{\ln^2(1-x)}{1-x}\tag1$$
multiply both sides by $\frac{\ln^6x}{6!x}$ then integrate from $x=0$ to $1$ we have
$$\sum_{n=1}^\infty \frac{H_n^2-H_n^{(2)}}{n^7}=\frac1{6!}\int_0^1\frac{\ln^2(1-x)\ln^6x}{x(1-x)}\ dx\tag2$$
Integrate both sides of $(1)$ from $x=0$ to $x$
$$\sum_{n=1}^\infty (H_n^2-H_n^{(2)})\frac{x^{n+1}}{n+1}=-\frac13\ln^3(1-x)$$
By reindexing we get
$$\ln^3(1-x)=-3\sum_{n=1}^\infty \left(H_n^2-H_n^{(2)}-\frac{2H_n}{n}+\frac2{n^2}\right)\frac{x^{n}}{n}\tag3$$
$$\int_0^1\frac{\ln^4(1-x)\ln^4x}{x(1-x)}\ dx=\int_0^1\frac{\ln^4(1-x)\ln^4x}{x}\ dx+\underbrace{\int_0^1\frac{\ln^4(1-x)\ln^4x}{1-x}\ dx}_{1-x\mapsto x}$$
$$=2\int_0^1\frac{\ln^4(1-x)\ln^4x}{x}\ dx\overset{IBP}{=}\frac85\int_0^1\frac{\ln^3(1-x)\ln^5x}{1-x}\ dx$$
use the identity $\frac1{1-x}=\frac1{x(1-x)}-\frac1x$ for the last integral,
$$\int_0^1\frac{\ln^4(1-x)\ln^4x}{x(1-x)}\ dx=\frac85\int_0^1\frac{\ln^3(1-x)\ln^5x}{x(1-x)}\ dx-\frac85\int_0^1\frac{\ln^3(1-x)\ln^5x}{x}\ dx\tag4$$
Lets use the identity $(3)$ for the last integral in$(4)$,
$$\int_0^1\frac{\ln^3(1-x)\ln^5x}{x}\ dx=-3\sum_{n=1}^\infty \left(H_n^2-H_n^{(2)}-\frac{2H_n}{n}+\frac2{n^2}\right)\frac{1}{n}\int_0^1 x^{n-1}\ln^5x\ dx$$
$$=3\cdot 5!\sum_{n=1}^\infty \left(H_n^2-H_n^{(2)}-\frac{2H_n}{n}+\frac2{n^2}\right)\frac{1}{n^7}$$
$$=3\cdot 5!\sum_{n=1}^\infty \frac{H_n^2-H_n^{(2)}}{n^7}-6\cdot 5!\left(\sum_{n=1}^\infty\frac{H_n}{n^8}-\zeta(9)\right)$$
$$\overset{(2)}{=}\frac12\int_0^1\frac{\ln^2(1-x)\ln^6x}{x(1-x)}\ dx-6\cdot 5!\left(\sum_{n=1}^\infty\frac{H_n}{n^8}-\zeta(9)\right)\tag5$$
Plug $(5)$ in $(4)$
$$\int_0^1\frac{\ln^4(1-x)\ln^4x}{x(1-x)}\ dx=\frac85\int_0^1\frac{\ln^3(1-x)\ln^5x}{x(1-x)}\ dx-\frac45\int_0^1\frac{\ln^3(1-x)\ln^5x}{x}\ dx+1152\left(\sum_{n=1}^\infty\frac{H_n}{n^8}-\zeta(9)\right)$$
Multiply by $5$ and rearrange
$$\int_0^1\frac{5\ln^4(1-x)\ln^4x-8\ln^3(1-x)\ln^5x+4\ln^2(1-x)\ln^6x}{x(1-x)}\ dx=5760\left(\sum_{n=1}^\infty\frac{H_n}{n^8}-\zeta(9)\right)$$
And finally by substituting
$$\sum_{n=1}^\infty\frac{H_n}{n^8}=5\zeta(9)-\zeta(2)\zeta(7)-\zeta(4)\zeta(5)-\zeta(3)\zeta(6)$$
we get the desired answer.
Note that the last sum follows from using the Euler identity.
I hope we can use this equality for calculating some challenging integrals/ Euler sums.