2

Let G be a finite group, if $H\lneq G$ and $|G| \nmid ( \, [G:H]! \, ) $ then prove $G$ is not simple.

I used contrapositive argument. Suppose $G$ is simple then we need to prove that $ |G| \mid ( \, [G:H]! \, ) $. Now consider the group action $$f:G\times G/H \rightarrow G/H \\ (g,xH) \mapsto (gxH)$$

Note that it is not necessary for $H$ to be a normal subgroup of $G$. This group action is equivalent to a homomorphism $\phi : G \rightarrow S(G/H)$. Then $K=Ker(\phi) \trianglelefteq G$. If $K={1}$ then $|G|$ divides $|S(G/H)|=[G:H]!$ . Now i am not sure how i can exclude the case of $K=G$. Any hints ?

Sam
  • 1,447

0 Answers0