From (1), (2), (3), $[\operatorname{Aut}(S_6):\operatorname{Inn}(S_6)]=2$.
My question:
$1$. How to prove $\operatorname{Aut}(S_6)\cong S_6\rtimes_\varphi \mathbb Z_2$?
$2$. How to prove $\operatorname{Aut}(S_6)\not\cong S_6\times \mathbb Z_2$?
$3$. How to prove $\operatorname{Aut}(A_6)\cong \operatorname{Aut}(S_6)$?
My effort:
$1$. For 1, it remains to show there exists $\sigma\in \operatorname{Aut}(S_6)\setminus \operatorname{Inn}(S_6)$ s.t. $\sigma^2=\text{id}$.
$2$. For 2, $Z(S_6\times\mathbb Z_2)=\mathbb Z_2$, it's sufficient to show $Z(\operatorname{Aut}(S_6))\neq\mathbb Z_2$.
$3$. For 3, I proved $\operatorname{Aut}(S_n)\leqslant\operatorname{Aut}(A_n)$ (Is this correct?) and $[\operatorname{Aut}(A_6):\operatorname{Inn}(S_6)]\leqslant 2$.
Update:
I wrote my answer below, but there still remain three questions:
$1$. I copied the result from a book to give an explicit element $\psi\in\operatorname{Aut}(S_6)\setminus \operatorname{Inn}(S_6)$ of order $2$, and I wonder if there's a way to avoid doing so, i.e. find an element of order $2$ in $\operatorname{Aut}(S_6)\setminus \operatorname{Inn}(S_6)$ without writing it out explicitly.
$2$. I used the specific element $\psi$ to show $\mathbb Z_2\cong \langle \psi\rangle$ is not normal in $\operatorname{Aut}(S_6)$, I wonder if we can analysis the center of $\operatorname{Aut}(S_6)$ instead. And what is center of $\operatorname{Aut}(S_6)$?
$3$. Is there a better way to prove $\operatorname{Aut}(A_6)\cong \operatorname{Aut}(S_6)$?
Thanks for your time and effort!