0

Im calculating the topological entropy of a certain dynamical system. In this calculation I encounter the limit $$\lim_{n\to\infty}\frac{1}{n}\log(F_{n}),$$ where $(F_{n})$ is the Fibonacci sequence ($F_{1}:=1$, $F_{2}:=1$, $F_{n+2}:=F_{n+1}+F_{n}$) and $\varphi$ is the golden ratio ($=1.6180\ldots$). How do I show that this limit converges to $\log(\varphi)$?

Calculix
  • 3,354
  • Related : https://math.stackexchange.com/questions/728973/fibonacci-numbers-and-golden-ratio-phi-lim-sqrtnf-n – Arnaud D. Oct 30 '19 at 12:05

3 Answers3

5

Note that $$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi$$ is a well known result. We also have that $$\lim_{n\to\infty}F_n^{1/n}=\varphi$$ because of the fact that $$\lim_{n\to\infty}a_n^{1/n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$$ when the latter limit exists. So we can say that $$\lim_{n\to\infty}\frac{\log{(F_n)}}n=\lim_{n\to\infty}\log{\left(F_n^{1/n}\right)}=\log{\left(\lim_{n\to\infty}F_n^{1/n}\right)}=\log{(\varphi)}$$ because $\log{(x)}$ is continuous when $x=\varphi$.

Peter Foreman
  • 19,947
3

Hint:

Since $\lim_{n\to\infty}\dfrac{F_{n+1}}{F_n}=\varphi$, we have by continuity

$$\lim_{n\to \infty }\bigl(\log F_{n+1} -\log F_n\bigr)=\log\varphi.$$

Now use Cesàro's theorem and the fact that the series $\bigl(\log F_{n+1} -\log F_n\bigr)$ is a telescoping series.

Bernard
  • 175,478
0

$$F_n=\frac{a^n-b^n}{\sqrt{5}}, a= \frac{1 + \sqrt{5}}{2}, b=\frac{1-\sqrt{5}}{2}, a>|b|$$ So when $n$ is large $$\frac{a^n-2b^n}{\sqrt{5}}< F_n <\frac{2 a^n}{\sqrt{5}} $$ Next, $$ \ln a +\frac{1}{n} \ln \frac{1}{\sqrt{5}}+ \ln[1-2 \left(\frac{b}{a}\right)^n] < \frac{1}{n} \ln (F_n) < \log a +\frac{1}{n} \ln \frac{2}{\sqrt{5}}.$$ As $|b/a|<1$ the limit $n\rightarrow \infty$ of both sides goes to $$\ln a.$$

Z Ahmed
  • 43,235