I am actually trying to Prove the formula: $$dxdy=rdrd\theta$$ When we change Cartesian System to Polar Coordinates:
We have: $$x=r\cos \theta$$ So
$$dx=-r\sin \theta d\theta+\cos \theta dr$$
Like Wise: $$y=r\sin \theta$$
$$dy=r\cos \theta d\theta+\sin \theta dr$$
Now we get:
$$\begin{bmatrix} dx\\ dy \end{bmatrix}=\begin{bmatrix} \cos \theta & -r\sin \theta\\ \sin \theta& r\cos \theta \end{bmatrix} \times \begin{bmatrix} dr\\ d\theta \end{bmatrix}$$
Now we call:
$$J=\begin{vmatrix} \cos \theta &-r\sin \theta \\ \sin \theta& r\cos \theta \end{vmatrix}=r$$
But Now i could not prove:
$$dxdy=Jdr d\theta$$