I have a college task to rationalize this fraction.
$$\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}$$
I do not know how to simplify this fraction.
Please, explain how to remove the radical from the denominator. Thanks, for your help.
I have a college task to rationalize this fraction.
$$\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}$$
I do not know how to simplify this fraction.
Please, explain how to remove the radical from the denominator. Thanks, for your help.
As shown below, the expression can be rationalized and simplified to, $$\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}} =6\sqrt2 + 2\sqrt{10}+4\sqrt{5+\sqrt5}$$
First, apply the denesting formula $\sqrt{a-\sqrt c}=\sqrt{\frac{a+\sqrt{a^2-c}}{2}}-\sqrt{\frac{a-\sqrt{a^2-c}}{2}}$ to the denominator,
$$\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}} =\frac{\sqrt{3+\sqrt5}}{2} -\frac{\sqrt{5-\sqrt5}}{2} $$
The expression then becomes,
$$A=\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}} = \frac{16}{\sqrt{3+\sqrt5}-\sqrt{5-\sqrt5}} $$
Next, apply the conjugate $\sqrt{3+\sqrt5}+\sqrt{5-\sqrt5}$ to the denominator,
$$A= \frac{8(\sqrt{3+\sqrt5}+\sqrt{5-\sqrt5})}{\sqrt5 -1} $$
Apply the conjugate $\sqrt5 +1$ to the denominator again to obtain,
$$A= 2\left(\sqrt{3+\sqrt5}+\sqrt{5-\sqrt5}\right)(\sqrt5 + 1) $$
Recognize $\sqrt{3+\sqrt5} = \frac{\sqrt5+1}{\sqrt2}$ to simplify,
$$A= \sqrt2 (\sqrt5+1)^2+2\sqrt{(5-\sqrt5)(\sqrt5 + 1)^2}$$ $$=\sqrt2 (6+2\sqrt5)+2\sqrt{(5-\sqrt5)(6+2\sqrt5 )}$$ $$=6\sqrt2 + 2\sqrt{10}+4\sqrt{5+\sqrt5}$$
Let use
$$\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}} \frac{\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}}{\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}}} \frac{\sqrt{4-{\frac{5+\sqrt{5}}{2}}}}{\sqrt{4-{\frac{5+\sqrt{5}}{2}}}}$$
Multiply top and bottom by the denominator to get $$\frac{8}{ \sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}} } }=\frac{8 {\sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}}}} } {2-\sqrt{\frac{5+\sqrt 5}{2}} }.$$ Then multiply top and bottom by $$2+\sqrt{\frac{5+\sqrt 5}{2}},$$ the conjugate of the denominator, to get $$\frac{8 {\sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}}}} \left(2+\sqrt{\frac{5+\sqrt 5}{2}}\right)}{4-\frac{5+\sqrt 5}{2}}.$$ This simplifies to give $$\frac{16 {\sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}}}} \left(2+\sqrt{\frac{5+\sqrt 5}{2}}\right)}{3-\sqrt 5}.$$ Finally multiply by $3+\sqrt 5$ again to get $$\frac{16 {\sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}}}} \left(2+\sqrt{\frac{5+\sqrt 5}{2}}\right)(3+\sqrt 5)}{9-5},$$ which simplifies to give $$4{\sqrt{2-\sqrt{\frac{5+\sqrt 5}{2}}}} \left(2+\sqrt{\frac{5+\sqrt 5}{2}}\right)(3+\sqrt 5).$$
By the way what you did was not rationalise the expression (you can't, since it's not rational). You've only rationalised the denominator.
Call the fraction by $r$. $$r:=\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}=\frac{8}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}\frac{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}{\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}$$
$$=\frac{8\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}}{2-\sqrt{\frac{5+\sqrt{5}}{2}}}=\frac{8\left(\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}\right)}{2-\sqrt{\frac{5+\sqrt{5}}{2}}}\frac{\left(2+\sqrt{\frac{5+\sqrt{5}}{2}}\right)}{2+\sqrt{\frac{5+\sqrt{5}}{2}}}$$
Call $u:=8\left(\sqrt{2-\sqrt{\frac{5+\sqrt{5}}{2}}}\right)\left(2+\sqrt{\frac{5+\sqrt{5}}{2}}\right)$. Then,
$$r=\frac{u}{4-\frac{5+\sqrt{5}}{2}}=\left(\frac{1}{2}\right)\frac{u}{8-5-\sqrt{5}}=\left(\frac{1}{2}\right)\frac{u}{3-\sqrt{5}}=\left(\frac{1}{2}\right)\frac{u}{3-\sqrt{5}}\frac{3+\sqrt{5}}{3+\sqrt{5}}.$$
Can you procced from here?
AA(8/sqrt(...)).radical_expression(). – MvG Nov 03 '19 at 17:09