Set $s=x+y+z$, then the left side is the cyclic sum over $\frac{x}{s-x}=\frac{s}{s-x}-1$. Considering $s$ fixed for the moment, this is a convex function for $0\le x<s$. By Jensen's inequality
$$
\frac13\sum_{cyc}\frac{x}{s-x}=\frac13\sum_{cyc}f(x)\ge f\left(\frac13\sum_{cyc}x\right)=\frac{s/3}{s-s/3}=\frac12.
$$
One does not need the general Jensen inequality, one can also use the inequality of harmonic and arithmetic mean (which is Jensen's inequality for $f(x)=\frac1x$),
$$
\frac{\frac{s}{s-x}+\frac{s}{s-y}+\frac{s}{s-z}}3\ge\frac3{\frac{s-x}{s}+\frac{s-y}{s}+\frac{s-z}{s}}=\frac32
$$
so that
$$
\sum_{cyc}\frac{x}{s-x}\ge\frac92-3=\frac32
$$