Is there a substitution approach to provide a closed-form solution to the following integral?
\begin{equation} \int_0^1\frac{(1-p)^{k-1}(1-p+p\ln p)}{\left(\ln p\right)^2}dp \end{equation}
Is there a substitution approach to provide a closed-form solution to the following integral?
\begin{equation} \int_0^1\frac{(1-p)^{k-1}(1-p+p\ln p)}{\left(\ln p\right)^2}dp \end{equation}
I see a reduction to a Frullani-type integral. The substitution $p=e^{-x}$ transforms it into $$I_k=\int_0^\infty e^{-x}(1-e^{-x})^k\frac{dx}{x^2}-\int_0^\infty e^{-2x}(1-e^{-x})^{k-1}\frac{dx}{x}$$ which, after integration by parts in the first term, gives $$I_k=\int_0^\infty(ke^{-2x}-e^{-x})(1-e^{-x})^{k-1}\frac{dx}{x}=(k-1)J_{k-1}-kJ_k,$$ where $$J_k=\int_0^\infty e^{-x}(1-e^{-x})^k\frac{dx}{x}=\sum_{j=0}^{k}\binom{k}{j}(-1)^{j+1}\ln(j+1)$$ is that very integral; see the middle of this answer of mine. (I don't see further reduction.)