0

Find if this series converges or diverges.

The ratio test gives me limit 1 so I tried with Raabe Duhamel's test but I am stuck .

https://i.stack.imgur.com/ETKSt.png

$$\sum\limits_{m = 1}^\infty \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\dots+\sqrt[m]{m}}$$

Anon
  • 9

1 Answers1

4

Note that $\sqrt[m]{m} < 2\ \forall m \in \mathbb{N}$. Now you have $$\sum\limits_{k=1}^m \sqrt[k]{k} < \sum\limits_{k=1}^m 2 = 2m$$ Therefore $$\sum\limits_{m=1}^\infty \frac{1}{\sum\limits_{k=1}^m \sqrt[k]{k}} > \sum\limits_{m=1}^\infty \frac{1}{2m} = \infty$$ Thus the series diverges.

Note: Induction or applying the binomial theorem for $(1+1)^m$ gives you $m<2^m$ and therefore $\sqrt[m]{m} < 2$

GhostAmarth
  • 2,138