Find if this series converges or diverges.
The ratio test gives me limit 1 so I tried with Raabe Duhamel's test but I am stuck .
https://i.stack.imgur.com/ETKSt.png
$$\sum\limits_{m = 1}^\infty \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\dots+\sqrt[m]{m}}$$
Find if this series converges or diverges.
The ratio test gives me limit 1 so I tried with Raabe Duhamel's test but I am stuck .
https://i.stack.imgur.com/ETKSt.png
$$\sum\limits_{m = 1}^\infty \frac{1}{1+\sqrt{2}+\sqrt[3]{3}+\dots+\sqrt[m]{m}}$$
Note that $\sqrt[m]{m} < 2\ \forall m \in \mathbb{N}$. Now you have $$\sum\limits_{k=1}^m \sqrt[k]{k} < \sum\limits_{k=1}^m 2 = 2m$$ Therefore $$\sum\limits_{m=1}^\infty \frac{1}{\sum\limits_{k=1}^m \sqrt[k]{k}} > \sum\limits_{m=1}^\infty \frac{1}{2m} = \infty$$ Thus the series diverges.
Note: Induction or applying the binomial theorem for $(1+1)^m$ gives you $m<2^m$ and therefore $\sqrt[m]{m} < 2$