This question is in my textbook:
What is the number of ways to put two non-identical knights on a chessboard so they attack each other?
My solution:
If two knights attack each other, they can be fit inside a $2 *3$ rectangle. There are $84$ ways to pick a $2 *3$ rectangle from the chessboard(horizontal and vertical) and there's $4$ ways to put $2$ non-identical knights inside such a rectangle so the answer is $4*84=336$.
But my textbook says it's $672$. I checked out this question and it said the number of ways to put $2$ attacking identical knights in a $n*n$ board is $4(n-1)(n-2)$ and substituting $8$ yields $4*7*6 = 168$. Note that since the knights are non-identical, we need to multiply $168$ by $2$ which results in the same answer as mine. So I'm fairly certain my answer is right and the textbook's is wrong but I wanted to make $100\%$ sure.
Thank you in advance!