Prove that for all $n ≥ 1$ $$1 - \frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} +\frac{1}{n+3} +\cdots+\frac{1}{2n}$$
My attempt:
By induction
Base case: $n = 1$
LHS : $1 - \frac{1}{2} = \frac{1}{2}$
RHS : $\frac{1}{1 + 1 } = \frac{1}{2}$
Suppose equality holds for $n$
We need to show that it holds for $n + 1$, i.e
$$1 - \frac{1}{2}+\frac{1}{3}-\frac{1}{4}-+\cdots-\frac{1}{2n+2} = \frac{1}{n+2} + \frac{1}{n+3} +\frac{1}{n+4} +\cdots+\frac{1}{2n+2} $$
We have $$\begin{align} 1 - \frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots-\frac{1}{2n+2} & = \bigl[1 - \frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots - \frac{1}{2n}\bigr] + \frac{1}{2n+1} - \frac{1}{2n+2} \\ & = \frac{1}{n+1} + \frac{1}{n+2} +\frac{1}{n+3} +\cdots+\frac{1}{2n} + \frac{1}{2n+1} - \frac{1}{2n+2} \\ & =\frac{1}{n+2} +\frac{1}{n+3} +\cdots+\frac{1}{2n} + \frac{1}{2n+1} +\bigl (\frac{1}{n+1} - \frac{1}{2n+2} \bigr)\\ & = \frac{1}{n+2} +\frac{1}{n+3} +\cdots+\frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2} \end{align}$$
As desired. $\Box$
Is it correct?