Prove that $4\tan^{-1} \left(\dfrac{1}{5}\right) - \tan^{-1}\left(\dfrac{1}{239}\right)=\dfrac{\pi}{4}.$
I was wondering if there was a shorter solution than the method below?
Below is my attempt using what I would call the standard approach to these kinds of problems.
The expression on the left hand side is equivalent to $$\tan^{-1}\left[\tan \left(4\tan^{-1}\left(\dfrac{1}{5}\right)\right)-\tan^{-1}\left(\dfrac{1}{239}\right)\right]\\ =\tan^{-1}\left(\dfrac{\tan(4\tan^{-1}(\frac{1}{5}))-\frac{1}{239}}{1+\frac{1}{239}\tan(4\tan^{-1}(\frac{1}{5}))}\right)\tag{1}.$$
We have that $$\tan\left(4\tan^{-1}\left(\frac{1}{5}\right)\right)=\dfrac{2\tan(2\tan^{-1}(\frac{1}{5}))}{1-\tan^2(2\tan^{-1}(\frac{1}{5})}\tag{2}$$
and that
$$\tan\left(2\tan^{-1}\left(\frac{1}{5}\right)\right)=\dfrac{2\cdot \frac{1}{5}}{1-(\frac{1}{5})^2}=\dfrac{5}{12}\tag{3}.$$
Plugging in the result of $(3)$ into $(2)$ gives $$\tan\left(4\tan^{-1}\left(\frac{1}{5}\right)\right) = \dfrac{2\cdot \frac{5}{12}}{1-(\frac{5}{12})^2}=\dfrac{120}{119}\tag{4}.$$
Pluggin in the result of $(4)$ into $(1)$ gives that the original expression is equivalent to $$\tan^{-1}\left(\dfrac{\frac{120}{119}-\frac{1}{239}}{1+\frac{1}{239}\cdot\frac{120}{119}}\right)=\tan^{-1}\left(\dfrac{\frac{119\cdot 239 + 239-119}{239\cdot 119}}{\frac{119\cdot 239+120}{119\cdot 239}}\right)=\tan^{-1}(1)=\dfrac\pi4,$$ as desired.