1

Evaluate

$$ \cos(x) \cos(2x) \cos(3x) ... \cos(999x) $$

where $x = \frac{2 \pi}{ 1999 }$.


Attempt:

Let $A = \cos(x) \cos(2x) \cos(3x) ... \cos(999x)$, $B = \sin(x) \sin(2x) \sin(3x) ... \sin(999x)$. Then

$$ AB = \frac{\sin(2x) \sin(4x) ... \sin(1998x)}{2^{999}} $$

then

$$ A = \frac{\sin(2x) \sin(4x) ... \sin(1998x)}{2^{999}(\sin(x) \sin(2x) ... \sin(999x))} $$ $$ = \frac{\sin(1000x) \sin(1002x) ... \sin(1998x)}{2^{999}(\sin(x) \sin(3x)... \sin(997x) \sin(999x))} $$

What to do after this? If I can find $1999x = 2\pi$ then it would be nice.

Redsbefall
  • 4,845

0 Answers0