Find all the positive integral solutions of, $\tan^{-1}x+\cos^{-1}\dfrac{y}{\sqrt{y^2+1}}=\sin^{-1}\dfrac{3}{\sqrt{10}}$
Assuming $x\ge1,y\ge1$ as we have to find positive integral solutions of $(x,y)$
$$\tan^{-1}x=\tan^{-1}3-\tan^{-1}\dfrac{1}{y}$$
As $3>0$ and $\dfrac{1}{y}>0$ $$\tan^{-1}x=\tan^{-1}\left(\dfrac{3-\dfrac{1}{y}}{1+\dfrac{3}{y}}\right)$$ $$\tan^{-1}x=\tan^{-1}\dfrac{3y-1}{y+3}$$
$$x=\dfrac{3y-1}{y+3}$$
$y+3\in[4,\infty)$ as $y\ge1$, $3y-1\in [2,\infty)$ as $y\ge1$
For $x$ to be positive integer, $3y-1$ should be multiple of $y+3$
$$3y-1=m(y+3) \text { where } m\in Z^{+}$$ $$3y-my=3m-1$$ $$(3-m)y=3m-1$$
Here R.H.S is positive, so L.H.S should also be positive.
So $3-m>0$, hence $m<3$
So possible values of $m$ are {$1$,$2$}.
For $m=1$, $$3y-1=y+3$$ $$2y=4$$ $$y=2$$
$$x=\dfrac{3\cdot2-1}{2+3}$$ $$x=1$$
For $m=2$, $$3y-1=2(y+3)$$ $$3y-1=2y+6$$ $$y=7$$
$$x=\dfrac{3\cdot7-1}{7+3}$$ $$x=\dfrac{20}{10}$$ $$x=2$$
Is there some other nicer way to solve this problem.