I'm trying to solve the following trigonometric equation
$$1+\sin(x)+\sin(2x)+\sin(3x)=\cos(x)+\cos(2x)+\cos(3x)$$
but I can't get any further than
$\iff 1 + 2\sin(2x)\cos(x) + \sin(2x) = 2\cos(2x)\cos(x) + \cos(2x)$
$\iff 1 + \sin(2x)(2\cos(x) + 1) = \cos(2x)(2\cos(x) + 1)$
$\iff 1 + \sin(2x)(2\cos(x) + 1) = \cos(2x)(2\cos(x) + 1)$
$\iff 1 = (\cos(2x)-\sin(2x))(2\cos(x) + 1)$
Could someone point me out in the right direction?