How can one compute the following limit $$ \lim_{n\rightarrow+\infty}n^{2}\left( \ln\left( 1+\frac{1}{n}\right) -\frac{1}{n+1}\right) \quad ? $$ I wrote
$$ \lim_{n\rightarrow+\infty}n^{2}\left( \ln\left( 1+\frac{1}{n}\right) -\frac{1}{n+1}\right) =\lim_{x\rightarrow0}\frac{\ln\left( 1+x\right) -x}{x^{2}}\overset{l^{\prime}H}{=}\lim_{x\rightarrow0}\frac{\dfrac{1}{1+x}% -1}{2x}\overset{l^{\prime}H}{=}\lim_{x\rightarrow0}\frac{-1}{2\left( 1+x\right) ^{2}}=-\frac{1}{2}. $$ But how can be a limit of a positive sequence be negative?