If $\displaystyle L = \lim_{x\rightarrow 0}\bigg(\frac{1}{\ln(1+x)}-\frac{1}{\ln(x+\sqrt{x^2+1})}\bigg).$
Then value of $\displaystyle L +\frac{153}{L}=$
what i try
$$L=\lim_{x\rightarrow 0}\frac{\ln(x+\sqrt{x^2+1})-\ln(1+x)}{\ln(1+x)\ln(x+\sqrt{x^2+1})}$$
from D L Hopital rule
$$L=\lim_{x\rightarrow 0}\frac{(x^2+1)^{-\frac{1}{2}}-(1+x)^{-1}}{\ln(x+\sqrt{x^2+1})(1+x)^{-1}+\ln(1+x)(x^2+1)^{-\frac{1}{2}}}$$
How do i solve it help me please