$$\underset{n\rightarrow\infty}\lim{\frac{n}{a^{n+1}}\left(a+\frac{a^2}{2}+\frac{a^3}{3}+\cdots+\frac{a^n}{n}\right)}=?, \;\;a>1$$
In Shaum's Mathematical handbook of formulas and tables I've seen: $$\;\;\;\;\;\;\;\;\;\;\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots\;,x\in\langle-1,1]\;\;\;\;\;\;\;$$
$$\frac{1}{2}\ln{\Bigg(\frac{1+x}{1-x}\Bigg)}=1+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7}+\cdots\;\;\;,x\in\langle-1,1\rangle$$ The term in parentheses reminded me of the harmonic series. I thought of using the Taylor series. Is that a good idea? It says $a>0$ so I probably can't use these two formulas. On the other hand: $$e^x=x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots\;\;\;\;\;\;,$$ but there are no factorials in the denominators.
Source in Croatian: 2.kolokvij, matematička analiza