7

$$\underset{n\rightarrow\infty}\lim{\frac{n}{a^{n+1}}\left(a+\frac{a^2}{2}+\frac{a^3}{3}+\cdots+\frac{a^n}{n}\right)}=?, \;\;a>1$$

In Shaum's Mathematical handbook of formulas and tables I've seen: $$\;\;\;\;\;\;\;\;\;\;\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots\;,x\in\langle-1,1]\;\;\;\;\;\;\;$$

$$\frac{1}{2}\ln{\Bigg(\frac{1+x}{1-x}\Bigg)}=1+\frac{x^3}{3}+\frac{x^5}{5}+\frac{x^7}{7}+\cdots\;\;\;,x\in\langle-1,1\rangle$$ The term in parentheses reminded me of the harmonic series. I thought of using the Taylor series. Is that a good idea? It says $a>0$ so I probably can't use these two formulas. On the other hand: $$e^x=x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots\;\;\;\;\;\;,$$ but there are no factorials in the denominators.

Source in Croatian: 2.kolokvij, matematička analiza

PinkyWay
  • 4,565

2 Answers2

8

By Stoltz-Cesaro

$$\frac{n}{a^{n+1}}\left(a+\frac{a^2}{2}+\frac{a^3}{3}+…+\frac{a^n}{n}\right)=\frac{\left(a+\frac{a^2}{2}+\frac{a^3}{3}+…+\frac{a^n}{n}\right)}{\frac{a^{n+1}}{n}}$$

we obtain

$$\frac{\frac{a^{n+1}}{n}}{\frac{a^{n+2}}{n+1}-\frac{a^{n+1}}{n}}=\frac1{\frac{na}{n+1}-1} \to \frac1{a-1}$$

user
  • 154,566
5

$$ \begin{align} \lim_{n\to\infty}\frac{n}{a^{n+1}}\left(a+\frac{a^2}2+\cdots+\frac{a^n}n\right) &=\lim_{n\to\infty}\left(\frac1a+\frac{n}{n-1}\frac1{a^2}+\frac{n}{n-2}\frac1{a^3}+\cdots\right)\tag1\\ &=\frac1a+\frac1{a^2}+\frac1{a^3}+\cdots\tag2\\ &=\frac1{a-1}\tag3 \end{align} $$ The series on the right side of $(1)$ is dominated by $$ \frac1a+\frac2{a^2}+\frac3{a^3}+\cdots=\frac{a}{(a-1)^2}\tag4 $$ which validates $(2)$.

robjohn
  • 345,667