0

Find $x$ $$\sin60 \sin30 \sin x=\sin50 \sin20 \sin(20-x)$$

$\frac{\sin(20^\circ-x)}{\sin x} = \cos 20^\circ-\sin20^\circ\cdot \cot x$, so we can easily find $x$. But you write Cheva theorem, probably, there exists a geometric solution.

emonHR
  • 2,650
  • Ceva's theorem is trivially satisfied as $(60^°+20^°)+(50^°+30^°)+(20^°-x+x)=180^°$. – Jon Nov 29 '19 at 13:47
  • Is it related to https://math.stackexchange.com/questions/3469866/solve-sin12%c2%ba-sin24%c2%ba-sin84%c2%ba-x%c2%ba-sin30%c2%ba-sin30%c2%ba-sinx%c2%ba – lab bhattacharjee Dec 10 '19 at 13:34

0 Answers0