Find $\dfrac{dy}{dx}$ if $y=\sin^{-1}\bigg[\dfrac{5\sin x+4\cos x}{\sqrt{41}}\bigg]$
My Attempt
Put $\cos\theta=5/\sqrt{41}\implies\sin\theta=4/\sqrt{41}$ $$ y=\sin^{-1}\big[\sin(x+\theta)\big]\implies\sin y=\sin(x+\theta)\\ y=n\pi+(-1)^n(x+\theta)\\ \boxed{\frac{dy}{dx}=(-1)^n} $$
But my reference gives the solution $y'=1$, am I missing something here ?

