By the traingle inequality, we know that $\left| x + y \right| \leq \left| x \right| + \left| y \right|$. If $\left| x + y \right| = 0$, your inequality holds trivially. Therefore, we shall consider the case when $0 < \left| x + y \right| \leq \left| x \right| + \left| y \right|$.
The inequality also gives us
$$\dfrac{1}{\left| x + y \right|} \geq \dfrac{1}{\left| x \right| + \left| y \right|}.$$
Then,
$$1 + \dfrac{1}{\left| x + y \right|} \geq 1 + \dfrac{1}{\left| x \right| + \left| y \right|},$$
so that,
$$\dfrac{1}{1 + \frac{1}{\left| x + y \right|}} \leq \dfrac{1}{1 + \frac{1}{\left| x \right| + \left| y \right|}}.$$
Simple rearrangement of terms gives us
$$\dfrac{\left| x + y \right|}{1 + \left| x + y \right|} \leq \dfrac{\left| x \right|}{1 + \left| x \right| + \left| y \right|} + \dfrac{\left| y \right|}{1 + \left| x \right| + \left| y \right|}.$$
Since $\left| x \right| \geq 0$ and $\left| y \right| \geq 0$, your inequality now follows.