-1

Prove that for every $x,y\in\mathbb{R},$ $$\dfrac{|x+y|}{1+|x+y|}\le\frac{|x|}{1+|x|}+ \frac{|y|}{1+|y|}.$$

I really don't know how to start. I thought to dividing it into 4 parts when $(x<0) \land (y>0)$, $(x>0)\land (y<0)$, $(x>0)\land (y>0)$, $(x<0)\land (y<0)$ but I didn't get much from this.

an4s
  • 3,716

1 Answers1

2

By the traingle inequality, we know that $\left| x + y \right| \leq \left| x \right| + \left| y \right|$. If $\left| x + y \right| = 0$, your inequality holds trivially. Therefore, we shall consider the case when $0 < \left| x + y \right| \leq \left| x \right| + \left| y \right|$.

The inequality also gives us

$$\dfrac{1}{\left| x + y \right|} \geq \dfrac{1}{\left| x \right| + \left| y \right|}.$$

Then,

$$1 + \dfrac{1}{\left| x + y \right|} \geq 1 + \dfrac{1}{\left| x \right| + \left| y \right|},$$

so that,

$$\dfrac{1}{1 + \frac{1}{\left| x + y \right|}} \leq \dfrac{1}{1 + \frac{1}{\left| x \right| + \left| y \right|}}.$$

Simple rearrangement of terms gives us

$$\dfrac{\left| x + y \right|}{1 + \left| x + y \right|} \leq \dfrac{\left| x \right|}{1 + \left| x \right| + \left| y \right|} + \dfrac{\left| y \right|}{1 + \left| x \right| + \left| y \right|}.$$

Since $\left| x \right| \geq 0$ and $\left| y \right| \geq 0$, your inequality now follows.

Aniruddha Deshmukh
  • 3,997
  • 1
  • 13
  • 33