0

For every $x,y \in \mathbb{R}$

$$\dfrac{\mid x+y\mid}{1+\mid x + y \mid} \le \dfrac{\mid x \mid}{1+\mid x \mid} + \dfrac{\mid y \mid}{1+\mid y \mid}$$

Having hard time proving this statement . Please help !

Thanks

Aviv Barel
  • 45
  • 5
  • This has been asked and answered frequently. You can find more identical Q&As with Approach0 – Martin R Dec 04 '19 at 12:33
  • Some more: https://math.stackexchange.com/q/194314, https://math.stackexchange.com/q/983043, https://math.stackexchange.com/q/2277665, https://math.stackexchange.com/q/2386990. – Martin R Dec 04 '19 at 12:37
  • Similar question, https://math.stackexchange.com/questions/2386990/proof-for-inequality-with-absolute-values?noredirect=1&lq=1 – Rita Geraghty Oct 05 '20 at 15:25

1 Answers1

2

Note that $\frac{u}{1+u}$ is increasing in $u$, and $|x+y| \leq |x|+|y|$.

Hence

$\frac{|x+y|}{1+|x+y|} \leq \frac{|x|+|y|}{1+|x|+|y|}\leq \frac{|x|}{1+|x|}+\frac{|y|}{1+|y|}$

fGDu94
  • 3,916