I want to prove:
$$\frac{1}{\sin z} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{(-1)^n 2z}{z^2 - \pi^2 n^2}$$
I tried to prove, I got this: $g(z) := \frac{1}{z} + \sum_{n=1}^{\infty} \frac{(-1)^n 2z}{z^2 - \pi^2 n^2} = \sum_{- \infty}^{+ \infty} \frac{(-1)^n}{z+n\pi}$ so $g(z)$ and $h(z) := \frac{1}{\sin z}$ have same pole of same order so $k(z) = h(z)-g(z)$ is holomorphic map. but I can't complete this.