0

Let $p\in(1,\infty)$ a $\ell^p$ be the space of sequences $x=\{x_n\}$ such that $\|x\|^p=\sum_{n=1}^\infty |x_n|^p<\infty$. Are spaces $\ell^2$ and $\ell^3$ linearly isomorphic (as normed spaces) ?

elliptic
  • 376

0 Answers0