$\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+1}+\dfrac{n}{n^2+2}+\dfrac{n}{n^2+3}\cdots\cdots+\dfrac{n}{n^2+n}\right)$
Can we write it as following
$E=\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+1}\right)+\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+2}\right)+\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+3}\right)\cdots\cdots+\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+n}\right)\tag{1}$
Let's see what happens:-
$$\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+1}\right)$$ $$\lim\limits_{n\to\infty}\dfrac{\dfrac{1}{n}}{1+\dfrac{1}{n^2}}=0$$
In the same way for further terms, we will get $0$
Let's also confirm for general term
$$\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+n}\right)$$ $$\lim\limits_{n\to\infty}\left(\dfrac{\dfrac{1}{n}}{1+\dfrac{1}{n}}\right)=0$$
So the whole expression $E$ will be zero
But actual answer is $1$
Let's see what happens if we evaluate the original expression $OE=\lim\limits_{n\to\infty}\left(\dfrac{n}{n^2+1}+\dfrac{n}{n^2+2}+\dfrac{n}{n^2+3}\cdots\cdots+\dfrac{n}{n^2+n}\right)$
$OE=\lim\limits_{n\to\infty}\left(\dfrac{\dfrac{1}{n}}{1+\dfrac{1}{n^2}}+\dfrac{\dfrac{1}{n}}{1+\dfrac{2}{n^2}}+\dfrac{\dfrac{1}{n}}{1+\dfrac{3}{n^2}}\cdots\cdots+\dfrac{\dfrac{1}{n}}{1+\dfrac{1}{n}}\right)$
Now we can easily see that each term inside the bracket is tending to $0$, so can we say that sum of all terms upto infinity as well tends to zero?
I think we cannot because the quantity is not exactly zero, it is tending to zero, so when we add the values tending to zero upto infinity, we may not get zero.
But I got the following counter thought:-
$\lim\limits_{x\to0}\dfrac{(1+x)^\frac{1}{3}-1}{x}$
As we know $(1+x)^n=1+nx+\dfrac{n(n-1)}{2}x^2+\dfrac{n(n-1)(n-2)}{6}x^3\cdots\cdots\infty$ where $|x|<1$
$\lim\limits_{x\to0}\dfrac{\left(1+\dfrac{1}{3}x-\dfrac{1}{3}\cdot\dfrac{2}{3}\cdot\dfrac{1}{2}x^2+\dfrac{1}{3}\cdot\dfrac{2}{3}\cdot\dfrac{5}{3}\cdot\dfrac{1}{6}x^3\cdots\cdots\right)-1}{x}$
$\lim\limits_{x\to0}\dfrac{1}{3}-\dfrac{1}{3}\cdot\dfrac{2}{3}\cdot\dfrac{1}{2}x+\dfrac{1}{3}\cdot\dfrac{2}{3}\cdot\dfrac{5}{3}\cdot\dfrac{1}{6}x^2\cdots\cdots$
Now here also all the terms except $\dfrac{1}{3}$ are tending to $0$. So here also we can say that the whole quantity may not turn out to be zero as we are adding all terms upto infinity.
But surprisingly $\dfrac{1}{3}$ is the correct answer.
I am feeling very confused in these two things. Please help me.