How can one expand $\text{arsinh}(x)$ in a power series at $0$?
I know that $\text{arsinh}(x) = \ln(x+\sqrt{x^2+1})$
and that
$$\text{arsinh}(x)' = \frac{1}{\sinh'(\text{arsinh}(x))} = \frac{1}{\cosh(\text{arsinh}(x))}$$
$$=\frac{1}{\sqrt{1+\sinh^2(\text{arsinh}(x))}} = \frac{1}{\sqrt{1+x^2}}$$
$$\text{since } \cosh^2(x)-\sinh^2(x)=1 \Leftrightarrow \cosh^2(x) = 1+\sinh^2(x)$$
And if we define
$$f(x):=\text{arsinh}(x)-\ln(x+\sqrt{x^2+1})$$
Then
$$f'(x) = \frac{1}{\sqrt{1+x^2}} - \frac{1}{x+\sqrt{1+x^2}} \cdot \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}} = \frac{1}{\sqrt{1+x^2}} - \frac{1}{\sqrt{1+x^2}} = 0$$
But that just proved the identity. How do I get the power series expansion of $\text{arsinh}(x)$ at $0$?
On proof wiki I found this
